skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lockyer, Rhys"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AIAA (Ed.)
    The mixing characteristics of an active coaxial injector in crossflow configurations are explored in this paper. A miniature rectangular CD nozzle generates crossflow for the injector for subsonic and supersonic test conditions. The flowfield of the active injection system consists of an actuation air jet at the inner core of the coaxial nozzle (1mm ID) that provides large mean and fluctuating velocity profiles in the shear layers of a fluid stream injected surrounding the core through an annular nozzle with ID=1.5 mm and OD=1.96 mm. The baseline flowfield of the annular stream in various crossflow conditions was studied first without actuation. The injector's active and passive actuation modes of operation are then evaluated and compared across multiple crossflow conditions with the baseline data. In the active mode, the annular stream is actuated by a pulsed jet operating at 17 kHz. In steady mode, the actuation jet is a steady coaxial underexpanded jet. Measurements using planar laser-induced fluorescence (PLIF) indicate that the active coaxial injection approach using high-frequency pulsed jets at the core significantly improves mixing of the acetone-seeded annular stream in supersonic crossflow conditions compared to the steady and baseline test cases. Data suggests that such a system has the potential to be evaluated further for real-life flow mixing and control applications, such as supersonic and hypersonic combustors. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  2. AIAA (Ed.)
    Efficient and controlled mixing of fuel with fast-moving air is a challenging physical problem relevant to hypersonic systems. Although mixing happens at the molecular level through diffusion, the macroscopic phenomenon such as entrainment and vorticity dynamics resulting from the shear layer instabilities of the mixing fluids play a significant role in the overall efficiency of the process. With a focus on improving mixing at extreme flow conditions, this paper presents a fundamental study of a novel, high-speed, pulsed coflow system integrated with ultrahigh-frequency actuators (11–20 kHz). This injection system consists of a supersonic actuation air jet at the inner core that provides large mean and fluctuating velocity profiles in the shear layers of a fluid stream injected surrounding the core through an annular nozzle, with pulsing occurring at a designated frequency. The high-frequency streamwise vortices and shockwaves tailored to the mean flow significantly enhanced supersonic flow mixing between the fluids compared to a steady coaxial configuration operating at the same input pressure. Experiments also indicate a strong connection between the frequency and unsteady amplitude of the actuation jet to the supersonic flow mixing phenomenon. This paper reports the design details of the injector assembly and flow mixing characteristics captured using phase-locked microschlieren and planar laser-induced fluorescence techniques. 
    more » « less
  3. Efficient and controlled mixing of fuel with fast-moving air is a challenging physical problem relevant to hypersonic systems. Although mixing happens at the molecular level through diffusion, the macroscopic phenomena such as entrainment and vorticity dynamics resulting from the shear layer instabilities of the mixing fluids play a significant role in the overall efficiency of the process. With a focus on improving mixing at extreme flow conditions, this paper presents a fundamental study of a novel, high-speed, pulsed co-flow system integrated with ultra-high frequency actuators that operates at 11-20 kHz. This injection system consists of a supersonic actuation air jet at the inner core that provides large mean and fluctuating velocity profiles in the shear layers of a fluid stream injected surrounding the core through an annular nozzle, with pulsing occurring at a designated frequency. The high-frequency streamwise vortices and shockwaves tailored to the mean flow significantly enhanced supersonic flow mixing between the fluids compared to a steady co-axial configuration operating at the same input pressure. Experiments also indicate a strong connection between the frequency and unsteady amplitude of the actuation jet to the supersonic flow mixing phenomena. This paper reports the design details of the injector assembly and flow mixing characteristics captured using phase-locked microschlieren and planar laser-induced fluorescence (PLIF) techniques. 
    more » « less